- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Kaitlin N (1)
-
Lam, Emily K (1)
-
Torres-Velarde, Julia María (1)
-
Vázquez-Medina, José Pablo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Marine mammals exhibit some of the most dramatic physiological adaptations in their clade and offer unparalleled insights into the mechanisms driving convergent evolution on relatively short time scales. Some of these adaptations, such as extreme tolerance to hypoxia and prolonged food deprivation, are uncommon among most terrestrial mammals and challenge established metabolic principles of supply and demand balance. Non-targeted omics studies are starting to uncover the genetic foundations of such adaptations, but tools for testing functional significance in these animals are currently lacking. Cellular modeling with primary cells represents a powerful approach for elucidating the molecular etiology of physiological adaptation, a critical step in accelerating genome-to-phenome studies in organisms in which transgenesis is impossible (e.g., large-bodied, long-lived, fully aquatic, federally protected species). Gene perturbation studies in primary cells can directly evaluate whether specific mutations, gene loss, or duplication confer functional advantages such as hypoxia or stress tolerance in marine mammals. Here, we summarize how genetic and pharmacological manipulation approaches in primary cells have advanced mechanistic investigations in other non-traditional mammalian species, and highlight the need for such investigations in marine mammals. We also provide key considerations for isolating, culturing, and conducting experiments with marine mammal cells under conditions that mimic in vivo states. We propose that primary cell culture is a critical tool for conducting functional mechanistic studies (e.g., gene knockdown, over-expression, or editing) that can provide the missing link between genome- and organismal-level understanding of physiological adaptations in marine mammals.more » « less
An official website of the United States government
